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Purpose	
•  With	the	advent	of	next	genera8on	sequencing	equipment	the	amount	of	

genomic	and	proteomic	data	has	exploded.	This	is	not	news.		
•  It	has	been	an8cipated	for	at	least	10	years,	and	has	engaged	the	

aKen8on	of	life	scien8sts	who	have	not	tradi8onally	been	taught	
sta8s8cs,	math	and	computer	science.		

•  It	has	also	engaged	the	aKen8on	of	computer	and	computa8onal	
scien8sts	from	the	tradi8onal	high	performance	compu8ng	community,	
who	seek	to	support	life	sciences	with	the	tools	they	have	developed	for	
physics.	

•  Some	of	these	tools	are	directly	applicable	–	but	some	are	not.	
•  The	matching	of	life	sciences	compu8ng	needs	with	the	tradi8onal	HPC	

community	offerings	have	not	always	been	smooth.	
•  However	…	some	of	the	most	exci8ng	scien8fic	work	occurs	at	the	

boundary	between	two	fields	of	study.	This	conjunc8on	of	life	sciences	
and	HPC	is	just	that.	

•  This	lecture	will	explore	that	intersec8on.	



Caveats	
•  Keep	in	mind	that	I	am	not	teaching	a	bioinforma8cs	course,	but	

using	some	sampling	of	bioinforma8cs	algorithms	to	illuminate	the	
underlying	compute	machinery	and	compu8ng	needs.	

•  This	is	a	learning	process	for	all	of	us	(me	especially)	from	mul8ple	
disciplines.	I’m	actually	a	mechanical	engineer,	but	have	worked	as	
computa8onal	scien8st	for	my	whole	career.	I	am	not	a	bio-
informa8cian		

•  But	I	will	soon	be	able	to	play	one	on	TV!		
•  As	I	constructed	this	lecture	I	presumed	that	I	would	be	able	to	

categorize	everything	into	a	neat	taxonomy.	I	can’t	–	It’s	actually	
the	Wild	West	out	there	right	now.	But	that	is	SO	exci8ng.	

•  Please	help	me	with	ques8ons.	Let’s	make	this	course	into	a	
discussion	where	we	both	can	learn.	



Outline	

•  Some	sugges8ve	workflows	and	the	
applica8ons	they	require	
– Biased	toward	tasks	that	require	high	throughput	
sequencing	…	and	thus	require	HPC	

•  An	overview	of	the	common	applica8ons	used	
in	the	workflows	(and	many	more)	and	a	
descrip8on	of	their	algorithms	

•  The	compu8ng	needs	of	these	algorithms	



The	central	dogma	of	biology	

•  PreKy	simple,	huh?		
•  NO!	In	reality,	we	know	it’s	very	complex	and	we	

don’t	know	how	to	draw	an	accurate	diagram.	
•  But	our	knowledge	of	biology	at	the	molecular	

level	comes	from	measuring	these	domains	and	
formula8ng	models	of	their	interac8on.	

•  In	the	last	few	years	our	ability	to	measure	has	
exploded,	producing	awesome	amounts	of	data.	

•  Analyzing	that	data	has	become	a	high	
performance	compu8ng	problem,	perhaps	one	
of	the	largest	and	most	important	compu8ng	
tasks	facing	us!			

Get	your	T-Shirt!	



Our	fundamental	presump8on	is	that	
disease	has	a	molecular	basis	



Compu8ng	in	Biology	has	a	very	broad	spectrum	
–	we	concentrate	toward	the	right		



Some	workflows:		
Human	Popula8on	Gene8cs	

Source:	Human	Disease	Research	in	the	Era	of		
Next-Genera8on	Sequencing,	BGI		
	



Some	workflows:	Complex	Disease	
Genome	Wide	Associa8on	Studies	

•  GWAS	combines	high-throughput	sequencing	and	genotyping	
to	uncover	causa8ve	gene8c	muta8ons	of	complex	human	
disease		

•  BGI’s	two	stage	workflow:	

Source:	Human	Disease	Research	in	the	Era	of		
Next-Genera8on	Sequencing,	BGI		
	



Dealing	with	mul8ple	
organisms	simultaneously		
			“Microbes	run	the	world.	It’s	that	

simple”	American	Na8onal	
Academies	2007	

	
•  Most	(>99%)	microbes	cannot	

be	studied	in	the	laboratory	
•  Understanding	microbial	

communi;es	in	situ	
•  Who	are	they?	and	what	do	

they	do?	

http://www.nap.edu/catalog.php?record_id=11902 



An	example:	one	current	
“Biogeochemical	Model”	in	global	

climate	models	
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• 	Based	upon:	Moore,	J.	K.,	Doney,	S.	C.,	Kleypas,	J.	A.,	Glover,	D.	M.,	&	Fung,	I.	Y.(2002)	Deep-Sea	Research	Part	II-Topical	Studies	in	
Oceanography	49,	403-46	
• 	with	added	sulfur	cycling	and	methane	(for	sea-bed	methane	release).	



A	very	current	example	-	the	Human	
Microbiome	Project	

•  Nature	Volume	486	
Number	7402	
pp157-286	June	14,	
2012	à	

•  The	Human	Microbiome	
Project	Collec8on	PLoS	
June	13,	2012	

•  NIH’s	site:	hKp://
hmpdacc.org/	



What	Analysis	Tools	are	available	to	you?		
Name Nucleic Acid Population Analysis Strategy 

RNA-Seq RNA (may be poly-A, mRNA, or 
total RNA) 

Alignment of reads to “genes”; 
variations for detecting splice 
junctions and quantifying 
abundance 

Small RNA Sequencing Small RNA (often miRNA) Alignment of reads to small 
RNA references (e.g. miRbase), 
then to the 
genome; quantify abundance 

ChIP-Seq DNA bound to protein, captured 
via antibody (ChIP=Chromatin 
ImmunoPrecipitation) 

Align reads to reference 
genome, identify peaks and 
motifs 

Structural Variation Analysis Genomic DNA, with two reads 
(mate-pair reads) per DNA 
template 

Align mate-pairs to reference 
sequence and interpret 
structural 
variants 

De novo Sequencing Genomic DNA, possibly with 
external data (e.g. cDNA, 
genomes of 
closely related species, etc.) 

Piece together reads to 
assemble contigs, scaffolds, 
and (ideally) 
whole-genome sequence 

Metagenomics Entire RNA or DNA from a 
(usually microbial) community 

Phylogenetic analysis of 
sequences 



Genomics	Sequencer	that	feed	this	
analysis		

•  Illumina	–	Sequencing-by-synthesis	chemistry;	Generates	600	
GB	of	data	in	a	standard	run	las8ng	27	hours	

•  Ion	Torrent	Systems	(a	subsidiary	of	Life	Technologies)	–	
Semiconductor	based	seq.	First	to	announce	$1000	genome	

•  Oxford	Nanopore	Technologies	–	Nanopore-based	GridION	
technology;	Enables	direct	sequencing	of	single	DNA;		

•  Pacific	Biosciences	of	California	–	Single	molecule,	real-8me	
(SMRT)	technology	–	real	8me	analysis	of	biomolecules	with	
single	molecule	resolu8on;		

•  454	Life	Sciences	(a	subsidiary	of	Roche	Applied	Sciences)	–	
Target	NGS	of	smaller	exomes	and	genomes	



Genomic	Sequencing:	Market		
(source:	IDC)	

•  Next	Genera8on	Sequencing	(NGS)	has	become	pervasive	
–  Found	in	academic	&		clinical	healthcare	research	
–  Agriculture	&	Pharmacology	CROs	quickly	adop8ng		

•  Two	primary	business	strategies	for	sequencing	companies	
–  Create	&	distribute	sequencing	instruments,	and	consumables	

•  Highly	specialized	instruments	require	special	training	&	care	
•  Margin	found	in	selling	of	consumables	(e.g.	printer	&	ink)	

–  Sequencing	Service	Provider	(SSP)	
•  Biological	sample	sent	to	lab	/	Data	is	shipped	to	customer	(ouen	w/USB	HD)	
•  Lab	provides	different	responses	(raw	data	à	fully	analyzed)	

•  Illumina	is	current	leader	in	sequencing	instruments	&	technology	
–  New	technologies	&	companies	coming	on	strong	

•  Oxford	Nanopore,	Ion	Torrent	(owned	by	Life	Tech),	Pac-Bio	…	

•  SSP	is	gaining	trac8on	leveraging	cloud	scale	&	capabili8es	
–  BGI,	Complete	Genomics	(leveraging	Illumina	instruments)	current	leaders	
–  Highly	compe88ve	space	(many	offerings	all	commodi8zing	price)	



Genomic	Sequencing:	Market		
(source:	IDC)	

•  Number	of	Gbase	processed	expected	to	grow	drama8cally	
–  Sequencers	produce	600+	Gbase/week	
–  Expected	to	double	in	FY12	
–  Raw	&	Analyzed	storage	~250TB/Sequencer/YR	

•  Anecdotal:	“One	customer	is	predic8ng	increase	to	about	1.4M	annual	samples	in	2014	
from	<100K	today.”	

–  Storage/Gbase	decreasing	due	to	new	formats	&	improved	compression	
–  Cost	of	Gbase	is	shrinking	-	Human	genome	cost	$50K	in	2009	à	$2.5K	in	

2012	

•  Con8nued	growth	in	storage	expected	in	sequencing	workflows	
–  High-end	sequencer	drives	~23.5TB	of	raw	data/year	

•  Analysis	&	archive	drives	~10X	that	(~250TB/year)	

•  Sequencing	requires	compute	&	storage	
•  Typical	facility	requires	250TB/sequencer/year	(expected	to	grow	next	year)	



The	impending	collapse	of	the	genome	informa3cs	ecosystem,	Stein	Genome	Biology	2010	11:207	
			

Complete	genomes	sequenced	
(Genomesonline.org	–	7/5/12)	
	
	
	
	
	
	
	
	
Major	sequencing	Centers	
	
	
	
And	…	this	data	is	geographically	
distributed	
	
BGI	demonstrated	genomic	data	transfer	at	nearly	10	gigabits	
per	second	between	US	and	China	(hKp://phys.org/news/
2012-06-bgi-genomic-gigabits-china.html)	

Some	numbers	illustra8ng	
the	size	of	the	problem	



Implica8ons	of	Sequencing	
Produc8vity	to	Overall	Costs	

Sboner, A, et al. 2011, ‘The real cost of sequencing: higher than you think!’, Genome Biology, 12:125  

Total	cost	will	be	driven	by	
Experimental	Design	and	Compute/
Storage	requirements	(more	than	by	
sequencing	itself)	



This	data	in	perspec8ve	
•  Two	other	well	known	“big	data”	fields	

– Astronomy/Astrophysics	
•  Next	genera8on	space	telescope	
•  Square	Kilometer	Array	

– High	energy	physics	
•  ATLAS	

•  This	is	Cool	Stuff	
–  But	the	size	of	data	in	these	fields	of	study	are	
dwarfed	by	the	prospec8ve	magnitude	of	life	sciences	
bioinforma8cs	data	…	and	processing	requirements	

–  Life	Sciences	directly	touches	our	daily	lives	-	$$	
	



Break	

Auer	the	break,	let’s	look	at	some	
algorithms	used	to	analyze	this	data		

	



Many	compu8ng	tasks	in	these	
workflows	…	

•  Involve	search	and	paKern	matching	
•  There	are	many	algorithms	behind	these	tasks,	but	
some	important	one	appear	ouen	
–  Dynamic	Programming	ala	Needleman-	Wunsch	and	
Smith-Waterman	

–  Heuris8c	algorithms	like	BLAST	and	FASTA	
–  The	compression	algorithm	of	Burrows-Wheeler	
–  Directed	graphs	-	deBruijn	Graphs			

•  I	will	cover	two	general	categories	of	applica8ons	that	
put	severe	demands	on	compu8ng	machinery	
–  Sequence	alignment	
–  Genome		Assembly	



Alignment	
•  Pairwise	alignment	

–  Dynamic	Programming	methods	
•  Global:	Needleman-Wunsch	
•  Local:	Smith	Waterman	

–  Heuris8c	methods	based	on	k-mers	
•  BLAST	

•  Short	Read	Alignment	
–  A	compression	algorithm	

•  Burrows-Wheeler	
•  I’ll	have	to	skip	mul8ple	sequence	alignment	for	lack	of	
8me	
–  Next	year:	BioHPC	102	?	



Sequence	Alignment	
•  Detec8on	of	sequence	similarity	points	to	similarity	in	func8on	or	origin	

(homology)	…	or	not!		
•  Comparison	between	two	sequences	(nucleic	acid	or	protein)	starts	with	a	

“pairwise	alignment”	
•  Example:	

Three	alignments	–	which	one	is	best?			

Sequence #1: CGGGTATCCAA                      
Sequence #2: CCCTAGGTCCCA

Alignment #1 Sequence #1: CGGGTA--T-CCAA  
Sequence #2: CCC-TAGGTCCC-A    

Alignment #2 Sequence #1: CGGGTA---TCCAA  
Sequence #2: CC--CTAGGTCCCA    

Alignment #3 Sequence #1: C-GGGTA--TCCAA  
Sequence #2: CC--CTAGGTCCCA 



Dynamic	programming	
•  Provides	“op8mal”	alignment	
•  Recognizes	(base	or	amino	acid)	matches,	mismatches	and	

gaps	and	“scores”	each	with	a	scoring	rule	or	matrix	
•  Example:	Find	the	global	alignment	of		

GAAGA	and	GTTTAAG	

–  Use	this	rule	for	the	ini8al	alignment	
•  Match	=	+1	
•  Mismatch	=	-1	
•  Gap	=	-3	

–  Needleman-Wunsch	–	global	alignment	



Set	up	a	matrix	

Source:	Incogen			



NW	Algorithm		
•  Use	these	rules	

–  Move	horizontally	introducing	a	gap	
•  Score	+=	gap	score	

–  Move	ver8cally	introducing	a	gap	
•  Score	+=	gap	score	

–  Move	diagonally 		
•  Score	+=	corner	value	

•  Then	build	a	matrix	of	scores	
star8ng	at	the	upper	leu	

•  Cell	score	is	the	maximum	of	qdiag,	
qup	or	qleu	

•  Mark	the	path	with	an	arrow	back	
to	the	max-cell	(if	there	is	more	
than	one,	mark	both)	

•  Then	traceback	through	the	
arrows	along	the	path	is	the	
alignment	

Where  
•  C is the score previously calculated 
•  S is “substitution” score – in our case 1 or -1 
•  g is the gap score – in our case -3  

Adapted	from:	Vladimir	Likic	Uni	Melbourne	



Source:	Incogen			



Source:	Incogen			



Source:	Incogen			



Source:	Incogen			



Source:	Incogen			



Source:	Incogen			



Source:	Incogen			



Global	alignments	with	the	highest	score	
GAAGA--
GTTTAAG

G-A-AGA
GTTTAAG

G--AAGA
GTTTAAG

G-AAGA-
GTTTAAG

GAAA-G-
GTTTAAG

GAA-GA-
GTTTAAG

•  There	are	six	global	
alignments	with	
score	=	-7!	

•  But	it	might	make	
sense	to	align	only	
certain	regions,	
perhaps	those	that	
are	conserved	à	
local	alignment	

= -7

= -7

= -7

= -7

= -7

= -7



Smith	Waterman	–	Local	alignment	
	
•  A	simple	varia8on	of	Needleman-

Wunsch	
–  local	alignment:	mismatches	and	gaps	at	the	

beginning	and	end	of	the	sequences	score	
0.			

–  Replaces	the	overall	score	by	zero	if	it	
becomes	nega8ve	values	for	all	alterna8ve	
pathways.		

–  Find	the	highest	score	in	the	table	and	trace	
the	path	back	un8l	we	come	to	a	cell	with	a	
score	of	zero	-	this	cell	is	not	included	in	the	
alignment	

•  This	simple	approach	restricts	
alignment	to	regions	of	reasonably	high	
similarity.		

•  However	“exact”	alignment	algorithms	
are	so	computa8onally	expensive	that	
they	become	unrealis8cally	slow	if	one	
wants	to	compare	a	sequence	to	a	
background	database	of	sequences.	

•  Thus	the	much	wider	use	of	heuris8c	
algorithms	like	FASTA	and	BLAST 

   GAAGA
             = 3
GTTTAAG

Adapted	from	“Sequence	Alignment	in	HIV	Computa8onal	Analysis”	
Ana	Abecasis,	Anne-Mieke	Vandamme,	and	Philippe	Lemey	and	from	Incogen	



Dynamic	Programming	becomes	quickly	
intractable	for	mul8ple	alignment	
Schema8c	of	DP	on	mul8ple	alignment	of	3	sequences			

Source:	Incogen			

Note	that	



Heuris8c	Algorithms	

•  Tries	out	most	likely	alignments	by	
– Finding	all	k-mers	(words)	of	length	l	or	larger	in	
both	sequences	

– When	finding	a	perfect	match	the	alignment	is	
extended	un8l:	

•  Either	sequence	ends	or	
•  The	score	drops	below	a	threshold	

•  BLAST	(and	FASTA)	are	much	faster	than	NW	
or	SW,	but	less	sensi8ve	
– Let’s	look	at	BLAST	



BLAST	–	The	most	used	app	
•  Basic	Local	Alignment	Search	Tools	are	a	set	of	

sequence	comparison	algorithms	introduced	in	
1990	that	are	used	to	search	sequence	
databases	for	op8mal	local	alignments	to	a	
query.		

–  Altschul	SF,	Gish	W,	Miller	W,	Myers	EW,	Lipman	
DJ	(1990)	“Basic	local	alignment	search	tool.”	J.	
Mol.	Biol.	215:403-410.	

–  Altschul	SF,	Madden	TL,	Schaeffer	AA,	Zhang	J,	
Zhang	Z,	Miller	W,	Lipman	DJ	(1997)	“Gapped	
BLAST	and	PSI-BLAST:	a	new	genera8on	of	protein	
database	search	programs.”	NAR	25:3389-3402.	

•  Scoring	of	matches	done	using	scoring	matrices	
•  Sequences	are	split	into	words	(default	n=3)	
•  BLAST	algorithm	extends	the	ini8al	“seed”	hit	

into	an	“high	scoring	segment	pair”	
–  HSP	=	high	scoring	segment	pair	=	Local	op8mal	

alignment	

•  Word	hits	are	then	extended	in	either	direc8on	
in	an	aKempt	to	generate	an	alignment	with	a	
score	exceeding	the	threshold	of	"S".		



What’s	a	scoring	matrix?	
•  Subs8tu8on	matrices	are	used	

for	amino	acid	alignments.		
–  each	possible	residue	

subs8tu8on	is	given	a	score		
•  A	simpler	unitary	matrix	is	

used	for	DNA	pairs	(+1	for	
match,	-2	mismatch)	

•  These	subs8tu8ons	are	
mo8ved	by	a	simple	
probabilis8c	model	of	the	
likelihood	of	one	residue	being	
replaced	by	another	
–  Derived	from	experiment	
–  There	are	numerous	scoring	

matrices	



Pick	your	BLAST	
There’s	a	bunch	

•  Blastp:	Compares	an	amino	acid	query	sequence	against	a	protein	sequence	
database.	

•  Blastn:	Compares	a	nucleo8de	query	sequence	against	a	nucleo8de	sequence	
database.	

•  Blastx:	Compares	a	nucleo8de	query	sequence	translated	in	all	reading	frames	
against	a	protein	sequence	database.	You	could	use	this	op8on	to	find	poten8al	
transla8on	products	of	an	unknown	nucleo8de	sequence.	

•  Tblastn:	Compares	a	protein	query	sequence	against	a	nucleo8de	sequence	
database	dynamically	translated	in	all	reading	frames.	

•  Tblastx:	Compares	the	six-frame	transla8ons	of	a	nucleo8de	query	sequence	
against	the	six-frame	transla8ons	of	a	nucleo8de	sequence	database.	

•  Megablast:	Con8guous	Nearly	iden8cal	sequences	and	Discon8guous	Cross-
species	comparison	

•  PSI-BLAST:	Posi8on	Specific.	Automa8cally	generates	a	posi8on	specific	score	
matrix	(PSSM)	

•  RPS-BLAST:	Posi8on	Specific.	Searches	a	database	of	PSI-BLAST	PSSMs	
•  	…	And	more	(MPI-BLAST,	etc.)	



Compu8ng	limita8ons	
•  Common	characteris8c:	single	threaded,	single	address	
space	

•  Generalize	to	a	cluster,	mul8ple	threads	and	
distributed	address	space.	Examples:	
– MPI-Blast	(www.mpiBlast.org),	uses	standard	message	
passing	to	distribute	compute	threads.	

•  Projects	exist	to	implement	on	Amazon	EC2		
–  BlastReduce	à	Cloudburst	(CloudBurst:	highly	sensi3ve	
read	mapping	with	MapReduce,	M.	Schatz,	
Bioinforma8cs	(2009)	25	(11):1363-1369)	uses	mapreduce	
and	has	been	implemented	in	hadoop	(actually	Amazon’s	
Map-Reduce)	on	Amazon	EC2.		

•  Watch	for	this	connec8on	later	in	the	talk		



pause	



Short	Read	Aligners	
•  Why?	à	changes	in	technology	

–  HT	Sequencers	produce	vast	numbers	of	reads	
–  These	reads	are	shorter	than	the	previous	Sanger	technology	
–  This	combina8on	renders	older	aligners	(BLAST	etc.)	inefficient	and				

•  A	current	list	(as	of	June	18,	2012)	
–  hKp://en.wikipedia.org/wiki/List_of_sequence_alignment_souware#Short-

Read_Sequence_Alignment	
•  The	Burrows-Wheeler	text	compression	algorithm	proves	useful	

–  	(Burrows	M	and	Wheeler	D	(1994),	
A	block	sor;ng	lossless	data	compression	algorithm,	Technical	Report	124,	
Digital	Equipment	Corpora8on)	

–  This	is	the	underlying	algorithm	of	bzip	and	bzip2.		
–  Text	compression?	What	does	that	have	to	do	with	alignment?	
–  Combine	B-W’s	reversible	compression	with	the	matching	algorithm	algorithm	

of	Ferragina	and	Manzini		(Opportunis8c	data	structures	with	applica8ons.	
Proceedings	of	the	41st	Annual	Symposium	on	Founda8ons	of	Computer	
Science.	IEEE	Computer	Society;	2000.)		
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The	Burrows-Wheeler	transform	(1994;	1983)	
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Source:	MoK	et.	al.,	Wellcome	Trust	

BWT	is	reversible.	To	be	
useful	for	loss-less	
compression	…	it	must	be,	
but	we’re	interested	in	its	
ability	to	map	



c1 a c2 a a c3 g $

The	“Last-First	mapping”	property	

$ c a c a a c g
a a c g $ c a c
a c a a c g $ c
a c g $ c a c a
c a a c g $ c a
c a c a a c g $
c g $ c a c a a
g $ c a c a a c

   1   2     3 
     3     1   2
   2     3     1
   3     1   2 
 2     3     1 
 1   2     3   
 3     1   2   
     1   2     3

The	rela8ve	ordering	of	a	par8cular	character	(say	c)	in	column	1	is	the	same	as	that	in	the	last	column	

Source:	MoK	et.	al.,	Wellcome	Trust	



c1 a c2 a a c3 g $

The	“Last-First	mapping”	property	

$ c a c a a c g
a a c g $ c a c
a c a a c g $ c
a c g $ c a c a
c a a c g $ c a
c a c a a c g $
c g $ c a c a a
g $ c a c a a c

   1   2     3 
     3     1   2
   2     3     1
   3     1   2 
 2     3     1 
 1   2     3   
 3     1   2   
     1   2     3

The	rela8ve	ordering	of	a	par8cular	character	(say	c)	in	column	1	is	the	same	as	that	in	the	last	column	

Source:	MoK	et.	al.,	Wellcome	Trust	



Auer	you	have	indexed	the	first	string		

•  Let’s	look	up	and	match	a	query	



Lookup	AAC	

$ c a c a a c g
a a c g $ c a c
a c a a c g $ c
a c g $ c a c a
c a a c g $ c a
c a c a a c g $
c g $ c a c a a
g $ c a c a a c

Range	ß	range	of	last	character	in	1st	column	
While	characters	leu	(and	nonzero	range):	

	Lookup	first	and	last	match	to	preceding	character	in	final	column	
	Range	ß	LF-mapping	of	first	and	last	match	

Source:	MoK	et.	al.,	Wellcome	Trust	



Lookup	AAC	

$ c a c a a c g
a a c g $ c a c
a c a a c g $ c
a c g $ c a c a
c a a c g $ c a
c a c a a c g $
c g $ c a c a a
g $ c a c a a c

Range	ß	range	of	last	character	in	1st	column	
While	characters	leu	(and	nonzero	range):	

	Lookup	first	and	last	match	to	preceding	character	in	final	column	
	Range	ß	LF-mapping	of	first	and	last	match	

Source:	MoK	et.	al.,	Wellcome	Trust	



Lookup	AAC	

$ c a c a a c g
a a c g $ c a c
a c a a c g $ c
a c g $ c a c a
c a a c g $ c a
c a c a a c g $
c g $ c a c a a
g $ c a c a a c

Range	ß	range	of	last	character	in	1st	column	
While	characters	leu	(and	nonzero	range):	

	Lookup	first	and	last	match	to	preceding	character	in	final	column	
	Range	ß	LF-mapping	of	first	and	last	match	

Source:	MoK	et.	al.,	Wellcome	Trust	



Lookup	AAC	

$ c a c a a c g
a a c g $ c a c
a c a a c g $ c
a c g $ c a c a
c a a c g $ c a
c a c a a c g $
c g $ c a c a a
g $ c a c a a c

Range	ß	range	of	last	character	in	1st	column	
While	characters	leu	(and	nonzero	range):	

	Lookup	first	and	last	match	to	preceding	character	in	final	column	
	Range	ß	LF-mapping	of	first	and	last	match	

Source:	MoK	et.	al.,	Wellcome	Trust	



Lookup	AAC	

$ c a c a a c g
a a c g $ c a c
a c a a c g $ c
a c g $ c a c a
c a a c g $ c a
c a c a a c g $
c g $ c a c a a
g $ c a c a a c

Range	ß	range	of	last	character	in	1st	column	
While	characters	leu	(and	nonzero	range):	

	Lookup	first	and	last	match	to	preceding	character	in	final	column	
	Range	ß	LF-mapping	of	first	and	last	match	

Source:	MoK	et.	al.,	Wellcome	Trust	



Lookup	AAC	

$ c a c a a c g
a a c g $ c a c
a c a a c g $ c
a c g $ c a c a
c a a c g $ c a
c a c a a c g $
c g $ c a c a a
g $ c a c a a c

Range	ß	range	of	last	character	in	1st	column	
While	characters	leu	(and	nonzero	range):	

	Lookup	first	and	last	match	to	preceding	character	in	final	column	
	Range	ß	LF-mapping	of	first	and	last	match	

Source:	MoK	et.	al.,	Wellcome	Trust	



Lookup	AAC	

$ c a c a a c g
a a c g $ c a c
a c a a c g $ c
a c g $ c a c a
c a a c g $ c a
c a c a a c g $
c g $ c a c a a
g $ c a c a a c

Range	ß	range	of	last	character	in	1st	column	
While	characters	leu	(and	nonzero	range):	

	Lookup	first	and	last	match	to	preceding	character	in	final	column	
	Range	ß	LF-mapping	of	first	and	last	match	

Source:	MoK	et.	al.,	Wellcome	Trust	



Lookup	AAC	

$ c a c a a c g
a a c g $ c a c
a c a a c g $ c
a c g $ c a c a
c a a c g $ c a
c a c a a c g $
c g $ c a c a a
g $ c a c a a c

Range	ß	range	of	last	character	in	1st	column	
While	characters	leu	(and	nonzero	range):	

	Lookup	first	and	last	match	to	preceding	character	in	final	column	
	Range	ß	LF-mapping	of	first	and	last	match	

Source:	MoK	et.	al.,	Wellcome	Trust	



However	there	is	a	great	deal	more	
to	an	actual	aligner			

•  This	is	a	workflow	of	
BOWTIE	

–  Ultrafast	and	memory-efficient	alignment	
of	short	DNA	sequences	to	the	human	
genome,	Ben	Langmead,	Cole	
Trapnell,	Mihai	Pop	and	Steven	L	Salzberg,	
Genome	Biology	2009,	10:R25	

–  Indexes	the	genome,	not	the	reads,	
rela8vely	low	memory	usage	for	BW,	
but	single	threaded.	

•  But	there	are	many	
more	implementa8ons	
as	we	will	see	…	

Adapted	from	Michael	Stromberg,	Illumina,	Canadian	Bioinforma8cs	Workshops	2011			



pause	



Assembly	
•  If	you	already	have	a	

reference	genome	
against	which	to	align	
…	pick	an	aligner/
mapper		

•  If	you	don’t,	then	you	
are	faced	with	de-Novo	
assembly		

•  Two	general	types	of	
assemblers	
–  Overlap	Consensus	
–  De	Bruijn	Graphs	

•  For	de-Novo	assembly	
from	HT	sequencing	de	
Bruijn	methods	have	
proven	most	efficient	

Put	that	back	
together	à	
	



De	Bruijn	Graph	assembly	
•  Wikipedia:	“De	Bruijn	graph	of	m	symbols	is	
a	directed	graph	represen8ng	overlaps	between	
sequences	of	symbols”	

•  Use	as	an	assembler	-	Concept:	
–  Decompose	all	reads	into	k-mers	(words	of	fixed	length	k)	
–  Construct	a	graph	with	the	k-mers	as	ver8ces	and	the	
directed	edges	are	the	connec8ons	between	a	k-mers	that	
overlap	by	k-1	

–  The	assembly	is	the	path	through	the	graph	

	



The	de	Bruijn	Graph	

AACTACTTACGCG	

AACTA	

Choose	a	word	length	k	(5	in	this	example,	but	larger	in	applica8ons)	

Source:	MoK	et.	al.,	Wellcome	Trust	

a	representa8on	of	all	possible	paths	joining	reads	together	
Pevsner,	PNAS	2001	



The	de	Bruijn	Graph	

AACTAACTACGCG	

AACTA	 ACTAA	

Source:	MoK	et.	al.,	Wellcome	Trust	



The	de	Bruijn	Graph	

AACTAACTACGCG	

AACTA	 ACTAA	 CTAAC	

Source:	MoK	et.	al.,	Wellcome	Trust	



The	de	Bruijn	Graph	

AACTAACTACGCG	

AACTA	 ACTAA	 CTAAC	 TAACT	

Source:	MoK	et.	al.,	Wellcome	Trust	



The	de	Bruijn	Graph	

AACTAACTACGCG	

AACTA	 ACTAA	 CTACT	 TAACT	

Source:	MoK	et.	al.,	Wellcome	Trust	



Same	sequence,	different	k=3	

ACTACTACTGCAGACTACT	

ACT	

CTA	TAC	 CTG	
TGC	

GCA	

CAG	

AGA	GAC	

Source:	MoK	et.	al.,	Wellcome	Trust	



Same	sequence,	different	k=17	

ACTACTACTGCAGACTACT	
	

ACTACTACTGCAGACTA	

CTACTACTGCAGACTAC	
TACTACTGCAGACTACT	

Source:	MoK	et.	al.,	Wellcome	Trust	



Recovering	unambiguous	con8gs	

bulge–	two	different	paths;	
in	a	diploid	genome	both		
might	be	correct	

Source:	MoK	et.	al.,	Wellcome	Trust	



But	there	is	a	lot	more	than	“just”	the	
de	Bruijn	Graph	

	This	is	the	workflow	of	SOAPdenovo	from:	
	
De	novo	assembly	of	human	genomes	
with	massively	parallel	short	read	
sequencing,	Ruiqiang	Li,	et.	al.,	Genome	
Res,	2010	20:	265-272	

Source:	MoK	et.	al.,	Wellcome	Trust	

Remember	these	numbers	for	later	



Break	

Auer	the	break,	let’s	look	at	souware	
and	hardware	systems	and	the	

compu8ng	challenges	they	are	meant	
to	address		



Now	that	we	know	a	bit	about	some	
important	algorithms	

•  Let’s	look	at	the	the	systems	and	infrastructures	
that	are	out	there	
–  The	aspects	of	the	compu8ng	demands	that	they	
address	

–  These	are	generally	the	ways	that	you	will	access	the	
infrastructures	

•  Portals,	Web	interfaces,	tool	systems	
–  local,	departmental,	big	data	center	and	cloud	

•  Accelerators,	big	memory	machines,	accelerator-
appliances	with	back	-ends	



First	some	Taxonomy	

Workflows	
Are	implemented	

on	some		
	

constella8on	of:	

§  A	“bioinforma8cs	compu8ng	system”	
includes	technologies	from	this	en8re	“stack”	

§  All	of	the	following	souware	and	hardware	
fits	into	this	taxonomy	and	is	meant	to	solve	
a	problem	specific	to	that	part	of	the	stack	

§  However	some	of	the	layers	may	not	be	
present	in	all	solu8ons.	

§  The	“white	gaps”	between	the	boxes	may	be	
through	of	as	interfaces	between	the	
technologies	and	are	ouen	the	“user	
interface”	of	how	the	user	views	the	rest	of	
the	system	

§  Keep	this	in	mind	as	we	discuss	the	following	
souware	and	hardware	

Souware	Frameworks	

Virtualiza8on	

Applica8ons	

System	Souware	and	Resource	
Management	

Computer	Hardware,	Storage	and	
Networks	

Programming	Model	(abstrac8on)	



Summary	of	compu8ng	barriers	
•  many	(most)	applica8ons	are	single	threaded.	
•  many	(most)	applica8ons	are	wriKen	for	a	single	address	space.	

–  NGS-size	data	quickly	pushes	1)	and	2)	beyond	the	capacity	of	a	single	node	
•  Need	mul8ple	threads	
•  A	large	memory	footprint		

•  Some	algorithms	(SW	as	an	example)	scale	quadra8clly	with	the	size	of	the	
problem	

–  Mo8va8ng	algorithmic	subs8tu8on	or	hardware	accelera8on	
•  Working	subsets	are	growing	too	large	to	fit	into	available	memory	

–  Mapping/aligning	with	BW	and	assembly	with	De	Bruijn	are	good	examples	
–  Mo8va8ng	algorithmic	innova8ons	and	novel	approaches	to	large	memory	computers.		

•  The	amount	of	data	barely	fits	into	currently	available	disk	space.	(And	soon	might	
not	–	see	the	first	part	of	the	talk)		

•  Databases	are	distributed	and	will	likely	stay	that	way	
–  Mo8va8ng	much	talk	of	“bringing	the	compu8ng	to	the	data”	
–  Of	preprocessing	for	downstream	upload,	etc….	
–  You	will	see	several	ideas	for	solu8ons	…		



Souware	Frameworks	
•  Available	as	a	“tar	ball”	for	your	local	(or	cloud)	installa8on	pleasure	

–  Galaxy		
–  Bioconductor,	R	
–  …	

•  Presented	as	a	portal	and	backed	by	some	compu8ng	horsepower	
–  Galaxy	
–  Bionimbus	
–  IMG/…	
–  MG-RAST	
–  …	

•  Or	available	as	a	cloud	image,	launch-able	on	your	cloud	(Eucalyptus,	
OpenStack)or	on	a	provider	(EC2,	Google,	etc.)	

–  Galaxy	
–  Bionimbus	
–  Bioconductor,	R	
–  CloudBioLinux,	descended	from	BioLinux	
–  …	



Galaxy	
•  A	web	based	pla�orm	for	analysis	of	

large	genomic	datasets	(galaxy.psu.edu)	
•  Integrates	many	tools	within	one	

interface:	
–  Including	a	“Next	Genera8on	

Sequencing	Toolbox”	
–  And	“access”	to	many	databases	(data	

must	be	loaded	on	request)	

•  Available	through	a	PSU.edu	portal,	for	
tar-ball	download,	or	as	an	EC2	image		

Souware	Frameworks	

Virtualiza8on	

Applica8ons	

System	Souware	and	Resource	Management	

Computer	Hardware,	Storage	and	Networks	

Programming	Model	(abstrac8on)	



Other	Framework	Examples	
•  Bioconductor		(

hKp://www.bioconductor.org/)	
–  U.	Wash	
–  Built	on	top	of	“R”	
–  Tar-ball	or	EC2	image	

•  Bionimbus	(
hKp://www.bionimbus.org/)	

–  U.	Chicago	
–  Portal	(

hKp://bc.bionimbus.org/Bionimbus/),	Tar-
Ball,		C2	or	private	cloud	images				

•  CloudBioLinux	
–  JCVI,	NEBC	Bioinforma8cs	Centre,	Harvard,	

Galaxy	
–  Was	tar-ball	BioLinux,	but	now	available	as	

CloudBioLinux	in	an	Amazon	EC2	image	

Souware	Frameworks	

Virtualiza8on	

Applica8ons	

System	Souware	and	Resource	
Management	

Computer	Hardware,	Storage	and	
Networks	

Programming	Model	(abstrac8on)	



Bioconductor	
•  Bioconductor	provides	tools	for	the	analysis	and	comprehension	of	high-

throughput	genomic	data.	Bioconductor	uses	the	R	sta8s8cal	
programming	language,	and	is	open	source	and	open	development.	It	has	
two	releases	each	year,	554	souware	packages,	and	an	ac8ve	user	
community.	Bioconductor	is	also	available	as	an	
Amazon	Machine	Image	(AMI).	

•  hKp://www.bioconductor.org/	
•  Bioconductor	is	built	on	top	of	“R”	a	sta8s8cs	analysis	engine	

–  R	is	a	language	and	environment	for	sta8s8cal	compu8ng	and	graphics.	It	is	a	
GNU	project	which	is	similar	to	the	S	language	and	environment	which	was	
developed	at	Bell	Laboratories.	There	are	some	important	differences,	but	
much	code	wriKen	for	S	runs	unaltered	under	R.		

–  R	provides	a	wide	variety	of	sta8s8cal	(linear	and	nonlinear	modeling,	classical	
sta8s8cal	tests,	8me-series	analysis,	classifica8on,	clustering,	...)	and	graphical	
techniques,	and	is	highly	extensible.	

–  hKp://www.r-project.org/		



Bionimbus	
•  Overview.	Bionimbus	is	an	open	source	cloud-based	system	for	managing,	analyzing	and	sharing	

genomic	data	that	has	been	developed	by	the	Ins8tute	for	Genomics	and	Systems	Biology	(IGSB)	at	
the	University	of	Chicago.	Bionimbus	is	designed	to	support	next-genera8on	sequencing	
instruments	and	integrates	technology	for	the	analyzing	and	transpor8ng	large	datasets.	There	is	
an	open	source	version	of	Bionimbus	available	to	those	who	wish	to	set	up	their	own	clouds.	There	
is	also	a	Bionimbus	Community	Cloud	operated	by	the	501(c)(3)	Open	Cloud	Consor8um’s	Open	
Science	Data	Cloud	that	includes	a	variety	of	public	genomics	and	related	data.	

•  Bionimbus	Community	Cloud.	There	is	a	Bionimbus	Community	Cloud,	which	research	
collaborators	can	log	into	and	use.	

•  Bionimbus	uses	the	Open	Cloud	Consor8um’s	Open	Science	Data	Cloud	(OSDC)	for	its	
infrastructure.	The	first	genera8on	of	Bionimbus	used	7	racks	of	equipment	containing	
approximately	3000	cores	and	1	PB	of	disk	that	Yahoo!	donated	to	the	OSDC.	Currently,	we	are	
using	approximately	six	racks	of	equipment	that	the	Gordon	and	BeKy	Moore	Founda8on	has	
funded.	Cisco	has	provided	access	to	the	Cisco	C-Wave	so	that	we	can	connect	the	four	OSDC	data	
centers	together	with	10	Gbps	wide	area	networks.	

•  Virtual	machine	images.	We	develop	and	maintain	Bionimbus	machine	images	that	can	be	run	on:	
•  i)	The	Bionimbus	Community	Cloud.	
•  ii)	Public	clouds	such	as	Amazon’s.	
•  iii)	Your	own	Eucalyptus	or	OpenStack-based	private	clouds.	
•  Your	own	Bionimbus	cloud.	The	Bionimbus	system	itself	is	open	source	and	you	can	build	your	

own	private	Bionimbus	clouds.	



Web	only	Frameworks:	
The	IMG	Web	Tools	

•  Oriented	around	microbial	and	
metagenomic	analysis		

•  Available	only	through	the	
Joint	Genome	Ins8tute’s	web	
portal	
–  Consolidates	applica8ons,	

databases	and	computa8on		
•  Data	Center	

–  “Our	data	storage	system	
consists	of	a	couple	Oracle	
databases	and	file	systems.	We	
also	have	several	backend	
pipelines	that	use	the	
supercompu8ng	facility	in	
NERSC	to	perform	gene	calling	
and	annota8ons.”	



More	Web-only	
Frameworks	

•  Argonne	Na8onal	Laboratory	
•  Annota8on	and	compara8ve	analysis	of	metagenomes,		

–  currently	prokaryotes	and	viruses			
•  Databases	

–  integrated	into	the	M5NR	non-redundant	database	using	the	M5NR	tools.	
•  Protein	databases:	

–  The	SEED,	GenBank,	RefSeq,	IMG/M,	UniProt,	eggNOGG,	KEGG,	PATRIC,		
•  Ribosomal	RNA	databases:	

–  Greengenes,	SILVA,	RDP		
•  Bioinforma8cs	Tools:	

–  FragGeneScan,BLAT	,	QIIME	,	Biopython,	Bow8e	,sff_extract,	Dynamic	Trim,	Krona	,
Raphaël	JavaScript	Library	,jQuery,	Circos	cURL	

•  Behind	the	scenes:	
–  Perl,	Python,	R,	Google’s	V8		JavaScript	engine,	Node.js,	JumpLoader,	Nginx,	OpenStack	

•  Compute	infrastructure?	
–  note	that	MG-RAST	is	at	Argonne,	also	one	of	the	pre-eminent	HPC	laboratories	



Applica8ons	that	implement	the	
algorithms	

•  There	is	an	absolute	wealth	of	
available	compe8ng	souware	

•  Each	with	varia8ons	specific		
–  to	the	domain	
–  to	the	compu8ng	challenge	

•  However	the	core	applica8ons	fit	into	
the	taxonomy	like	this:	

•  Most	of	the	8me	the	apps	are	
embedded	in	a	framework,	but	are	
some8mes	directly	available	“at	the	
command	line.”	

•  They	are	always	supported	by	the	
stack	technologies	below	them,	
whether	delivered	by	laptop,	
worksta8on,	server	or	cloud.		

•  The	following	slides	give	a	whirlwind	
tour	of	apps		

Souware	Frameworks	

Virtualiza8on	

Applica8ons	

System	Souware	and	Resource	
Management	

Computer	Hardware,	Storage	and	
Networks	

Programming	Model	(abstrac8on)	



Mappers/Aligners	
•  BOWTIE	-	Ultrafast,	memory-efficient	short	read	

aligner.	It	aligns	short	DNA	sequences	(reads)	to	the	
human	genome	at	a	rate	of	25	million	reads	per	
hour	on	a	typical	worksta8on	with	2	gigabytes	of	
memory.	Uses	a	Burrows-Wheeler-Transformed	
(BWT)	index.	Link	to	discussion	thread	here.	WriKen	
by	Ben	Langmead	and	Cole	Trapnell.	Linux,	
Windows,	and	Mac	OS	X.		

•  MAQ	-	Ultrafast,	memory-efficient	short	read	
aligner.	It	aligns	short	DNA	sequences	(reads)	to	the	
human	genome	at	a	rate	of	25	million	reads	per	
hour	on	a	typical	worksta8on	with	2	gigabytes	of	
memory.	Uses	a	Burrows-Wheeler-Transformed	
(BWT)	index.	Link	to	discussion	thread	here.	WriKen	
by	Ben	Langmead	and	Cole	Trapnell.	Linux,	
Windows,	and	Mac	OS	X.		

•  inGAP	-	Integrated	Next-gen	Genome	Analysis	
Pla�orm		

•  DNA	star	-	DNASTAR	has	souware	solu8ons	to	
simplify	your	reference-guided	assembly	projects	
using	Next-Genera8on	Roche	454	Life	Sciences,	
Illumina,	ABI	SOLiD,	Helicos	and/or	Sanger	data.		

•  BWA	-	Heng	Lee's	BWT	Alignment	program	-	a	
progression	from	Maq.	BWA	is	a	fast	light-weighted	
tool	that	aligns	short	sequences	to	a	sequence	
database,	such	as	the	human	reference	genome.	By	
default,	BWA	finds	an	alignment	within	edit	
distance	2	to	the	query	sequence.	C++	source.		

•  GenomeMapper	-		GenomeMapper	is	a	short	read	
mapping	tool	designed	for	accurate	read	
alignments.	It	quickly	aligns	millions	of	reads	either	
with	ungapped	or	gapped	alignments.	A	tool	
created	by	the	1001	Genomes	project.	Source	for	
POSIX.		

•  Genomic	Next-genera8on	Universal	MAPper	
(gnumap)	-	The	Genomic	Next-genera8on	Universal	
MAPper	(gnumap)	is	a	program	designed	to	
accurately	map	sequence	data	obtained	from	next-
genera8on	sequencing	machines	(specifically	that	of	
Solexa/Illumina)	back	to	a	genome	of	any	size.	It	
seeks	to	align	reads	from	nonunique	repeats	using	
sta8s8cs.	From	authors	at	Brigham	Young	
University.	C	source/Unix.		

•  RMAP	-	Assembles	20	-	64	bp	Illumina	reads	to	a	
FASTA	reference	genome.	By	Andrew	D.	Smith	and	
Zhenyu	Xuan	at	CSHL.	(published	in	BMC	
Bioinforma8cs).	POSIX	OS	required.		



More	Mappers/Aligners	
•  MOSAIK	-		MOSAIK	produces	gapped	alignments	

using	the	Smith-Waterman	algorithm.	Features	a	
number	of	support	tools.	Support	for	Roche	FLX,	
Illumina,	SOLiD,	and	Helicos.	WriKen	by	Michael	Str		

•  mr	&	mrs	FAST	-		mrFAST	&	mrsFAST	are	designed	
to	map	short	reads	generated	with	the	Illumina	
pla�orm	to	reference	genome	assemblies;	in	a	fast	
and	memory-efficient	manner.	Robust	to	INDELs	
and	MrsFAST	has	a	bisulphite	mode.	Authors	are	
from	the	University	of	Washington.	C	as	source.		

•  MUMmer-		MUMmer	is	a	modular	system	for	the	
rapid	whole	genome	alignment	of	finished	or	drau	
sequence.	Released	as	a	package	providing	an	
efficient	suffix	tree	library,	seed-and-extend	
alignment,	SNP	detec8on,	repeat	detec8on,	and	
visualiza8on	tools.	Version	3.0	was	developed	by	
Stefan	Kurtz,	Adam	Phillippy,	Arthur	L	Delcher,	
Michael	Smoot,	Mar8n	Shumway,	Corina	Antonescu	
and	Steven	L	Salzberg	-	most	of	whom	are	at	The	
Ins8tute	for	Genomic	Research	in	Maryland,	USA.	
POSIX	OS	required.		

•  NOVOCRAFT-	Tools	for	reference	alignment	of	
paired-end	and	single-end	Illumina	reads.	Uses	a	
Needleman-Wunsch	algorithm.	Can	support	Bis-Seq.	
Commercial.	Available	free	for	evalua8on,	
educa8onal	use	and	for	use	on	open	not-for-profit	
projects.	Requires	Linux	or	Mac	OS	X.		

•  PASS-	I	t	supports	Illumina,	SOLiD	and	Roche-FLX	
data	formats	and	allows	the	user	to	modulate	very	
finely	the	sensi8vity	of	the	alignments.	Spaced	seed	
in8al	filter,	then	NW	dynamic	algorithm	to	a	
SW(like)	local	alignment.	Authors	are	from	CRIBI	in	
Italy.	Win/Linux.		

•  SOAP-	SOAP	(Short	Oligonucleo8de	Alignment	
Program).	A	program	for	efficient	gapped	and	
ungapped	alignment	of	short	oligonucleo8des	onto	
reference	sequences.	The	updated	version	uses	a	
BWT.	Can	call	SNPs	and	INDELs.	Author	is	Ruiqiang	
Li	at	the	Beijing	Genomics	Ins8tute.	C++,	POSIX.		



Mapping	Assembly	
•  ZOOM-	ZOOM	(Zillions	Of	Oligos	Mapped)	is	

designed	to	map	millions	of	short	reads,	emerged	
by	next-genera8on	sequencing	technology,	back	to	
the	reference	genomes,	and	carry	out	post-analysis.	
ZOOM	is	developed	to	be	highly	accurate,	flexible,	
and	user-friendly	with	speed	being	a	cri8cal	priority.	
Commercial.	Supports	Illumina	and	SOLiD	data.		

•  SOCS-	Aligns	SOLiD	data.	SOCS	is	built	on	an	
itera8ve	varia8on	of	the	Rabin-Karp	string	search	
algorithm,	which	uses	hashing	to	reduce	the	set	of	
possible	matches,	dras8cally	increasing	search	
speed.	Authors	are	Ondov	B,	Varadarajan	A,	
Passalacqua	KD	and	Bergman	NH.		

•  SHRiMP-	Assembles	to	a	reference	sequence.	
Developed	with	Applied	Biosystem's	colourspace	
genomic	representa8on	in	mind.	Authors	are	
Michael	Brudno	and	Stephen	Rumble	at	the	
University	of	Toronto.	POSIX.		

•  SLIDER	-	An	applica8on	for	the	Illumina	Sequence	
Analyzer	output	that	uses	the	probability	files	
instead	of	the	sequence	files	as	an	input	for	
alignment	to	a	reference	sequence	or	a	set	of	
reference	sequences.	Authors	are	from	BCGSC.		

•  BFAST	-	Blat-like	Fast	Accurate	Search	Tool.	WriKen	
by	Nils	Homer,	Stanley	F.	Nelson	and	Barry	
Merriman	at	UCLA.	

•  ELAND	-	Efficient	Large-Scale	Alignment	of	
Nucleo8de	Databases.	Whole	genome	alignments	
to	a	reference	genome.	WriKen	by	Illumina	author	
Anthony	J.	Cox	for	the	Solexa	1G	machine.		

•  Exonerate	-	Various	forms	of	pairwise	alignment	
(including	Smith-Waterman-Gotoh)	of	DNA/protein	
against	a	reference.	Authors	are	Guy	St	C	Slater	and	
Ewan	Birney	from	EMBL.	C	for	POSIX.		

•  GMAP	-	GMAP	(Genomic	Mapping	and	Alignment	
Program)	for	mRNA	and	EST	Sequences.	Developed	
by	Thomas	Wu	and	Colin	Watanabe	at	Genentec.	C/
Perl	for	Unix.		



Mapping	Assembly	

•  GNUMAP-	The	Genomic	Next-genera8on	Universal	
MAPper	(gnumap)	is	a	program	designed	to	
accurately	map	sequence	data	obtained	from	next-
genera8on	sequencing	machines	(specifically	that	of	
Solexa/Illumina)	back	to	a	genome	of	any	size.	It	
seeks	to	align	reads	from	nonunique	repeats	using	
sta8s8cs.	From	authors	at	Brigham	Young	
University.	C	source/Unix.		

•  SeqMap	-	Supports	up	to	5	or	more	bp	mismatches/
INDELs.	Highly	tunable.	WriKen	by	Hui	Jiang	from	
the	Wong	lab	at	Stanford.	Builds	available	for	most	
OS's.		

•  SSAHA	-	SSAHA	(Sequence	Search	and	Alignment	by	
Hashing	Algorithm)	is	a	tool	for	rapidly	finding	near	
exact	matches	in	DNA	or	protein	databases	using	a	
hash	table.	Developed	at	the	Sanger	Centre	by	
Zemin	Ning,	Anthony	Cox	and	James	Mullikin.	C++	
for	Linux/Alpha.		

•  SWIFT	-	The	SWIFT	suit	is	a	souware	collec8on	for	
fast	index-based	sequence	comparison.	It	contains:	
SWIFT	.	fast	local	alignment	search,	guaranteeing	to	
find	epsilon-matches	between	two	sequences.	
SWIFT	BALSAM	.	a	very	fast	program	to	find	
semiglobal	non-gapped	alignments	based	on	k-mer	
seeds.	Authors	are	Kim	Rasmussen	(SWIFT)	and	
Wolfgang	Gerlach	(SWIFT	BALSAM)		

•  SXOligoSeach	-	SXOligoSearch	is	a	commercial	
pla�orm	offered	by	the	Malaysian	based	Synama8x.	
Will	align	Illumina	reads	against	a	range	of	Refseq	
RNA	or	NCBI	genome	builds	for	a	number	of	
organisms.	Web	Portal.	OS	independent.		

•  Vmatch	-		A	versa8le	souware	tool	for	efficiently	
solving	large	scale	sequence	matching	tasks.	
Vmatch	subsumes	the	souware	tool	REPuter,	but	is	
much	more	general,	with	a	very	flexible	user	
interface,	and	improved	space	and	8me	
requirements.	Essen8ally	a	large	string	matching	
toolbox.	POSIX.		



Denovo	Assembly	
•  VELVET	-	Velvet	is	a	de	novo	genomic	assembler	specially	

designed	for	short	read	sequencing	technologies,	such	as	
Solexa	or	454.	Need	about	20-25X	coverage	and	paired	reads.	
Developed	by	Daniel	Zerbino	and	Ewan	Birney	at	the	
European	Bioinforma8cs	Ins8tute	(EMBL-EBI).		

•  SOAPdenovo-	denovo	assenmbler	part	of	SOAP	(Short	
Oligonucleo8de	Alignment	Program).		

•  MIRA-	MIRA	(Mimicking	Intelligent	Read	Assembly)	is	able	to	
perform	true	hybrid	de-novo	assemblies	using	reads	gathered	
through	454	sequencing	technology	(GS20	or	GS	FLX).	
Compa8ble	with	454,	Solexa	and	Sanger	data.	Linux	OS	
required.	

•  EULER	-	Short	read	de	novo	assembly.	By	Mark	J.	Chaisson	
and	Pavel	A.	Pevzner	from	UCSD	(published	in	Genome	
Research).	Uses	a	de	Bruijn	graph	approach.	

•  VCAKE	-		De	novo	assembly	of	short	reads	with	robust	error	
correc8on.	An	improvement	on	early	versions	of	SSAKE.	

•  AMOS	-	Manipula8on	of	input	and	output	files	related	to	
whole-genome	shotgun	assembly.	

•  ABySS	-	Assembly	By	Short	Sequences.	ABySS	is	a	de	novo	
sequence	assembler	that	is	designed	for	very	short	reads.	The	
single-processor	version	is	useful	for	assembling	genomes	up	
to	40-50	Mbases	in	size.	The	parallel	version	is	implemented	
using	MPI	and	is	capable	of	assembling	larger	genomes.	By	
Simpson	JT	and	others	at	the	Canada's	Michael	Smith	
Genome	Sciences	Centre.	C++	as	source.	

•  SHARCGS	-	De	novo	assembly	of	short	reads.	Authors	are	
Dohm	JC,	LoKaz	C,	Borodina	T	and	Himmelbauer	H.	from	the	
Max-Planck-Ins8tute	for	Molecular	Gene8cs.	

•  EDENA	-		Edena	(Exact	DE	Novo	Assembler)	is	an	assembler	
dedicated	to	process	the	millions	of	very	short	reads	
produced	by	the	Illumina	Genome	Analyzer.	Edena	is	based	
on	the	tradi8onal	overlap	layout	paradigm.	By	D.	Hernandez,	
P.	Fran	

•  CELERA	-	Celera	Assembler	can	reconstruct	long	sequences	of	
genomic	DNA	given	the	fragmentary	data	produced	by	
whole-genome	shotgun	sequencing.	

•  ALLPATHS	Broad	ins8tute	up://up.broadins8tute.org/pub/
crd/ALLPATHS/Release-LG/)	

•  Cortex_var	-	Wellcome,	EBI,	GAC:	hKp://
cortexassembler.sourceforge.net/index_cortex_var.html	



More	Denovo	Assembly	
•  ELVIRA	-	High	throughput	assembly	of	amplicon	reads	for	virus-

sized	genomes.		
•  TIGR	-	The	TIGR	Assembler	is	a	tool	to	assemble	large	shotgun	

sequencing	projects.		
•  SSAKE	-	The	Short	Sequence	Assembly	by	K-mer	search	and	3'	read	

Extension	(SSAKE)	is	a	genomics	applica8on	for	aggressively	
assembling	millions	of	short	nucleo8de	sequences	by	progressively	
searching	for	perfect	3'-most	k-mers	using	a	DNA	prefix	tree.	
Authors	are	Ren		

•  ARACHNE	-	ARACHNE	is	a	program	for	assembling	data	from	whole	
genome	shotgun	sequencing	experiments.	It	was	designed	for	long	
reads	from	Sanger	sequencing	technology,	and	has	been	used	
extensively	to	assemble	many	genomes,	including	many	that	are	
large	and	highly	repe88ve.		

•  CLC	Genomics	Workbench	-	CLC	bio	supports	the	latest	
technological	developments.	And	of	course	this	includes	the	very	
interes8ng	developments	within	Next	Genera8on	Sequencing	
(NGS).		

•  FORGE	-	Whole	genome	assembler	that	can	combine	
heterogeneous	DNA	sequencing	technologies.	Uses	MPI	to	scale	
across	compute	clusters.		

•  RAY	-		Ray	is	a	parallel	souware	that	computes	de	novo	genome	
assemblies	with	next-genera8on	sequencing	data.	

•  Ray	is	wriKen	in	C++	and	can	run	in	parallel	on	numerous	
interconnected	computers	using	the	
message-passing	interface	(MPI)	standard.	

•  KNIME	-	KNIME	(Konstanz	Informa8on	Miner)	is	a	user-friendly	and	
comprehensive	open-source	data	integra8on,	processing,	analysis,	
and	explora8on	pla�orm.	(KNIME	is	looking	to	MPI	enable	their	
souware	mainly	at	the	request	of	their	drug	and	life	sciences	
customers)	

•  LaserGene	-	Comprehensive	Souware	for	DNA	&	Protein	
Sequence	Analysis,	Con8g	Assembly	and	Sequence	Project	
Management	-	Now	with	expanded	Next-Genera8on	
Sequence	Assembly	and	Analysis	Capability		

•  SeqMan	NGen	-	Souware	for	Next	Genera8on	sequence	
assembly	of	Illumina,	Roche	454	Life	Sciences,	ABI	SOLiD	and	
Helicos	Data		

•  ALLPATHS	-	ALLPATHS:	De	novo	assembly	of	whole-genome	
shotgun	microreads.	ALLPATHS	is	a	whole	genome	shotgun	
assembler	that	can	generate	high	quality	assemblies	from	
short	reads.	Assemblies	are	presented	in	a	graph	form	that	
retains	ambigui8es,	such	as	those	arising	from	polymorphism,	
thereby	providing	informa8on	that	has	been	absent	from	
previous	genome	assemblies.	Broad	Ins8tute.		

•  SAM	-	SAM	is	a	Whole	Genome	Assembly	(WGA)	
Management	and	Visualiza8on	Tool.	It	provides	a	generic	
pla�orm	for	manipula8ng,	analyzing	and	viewing	WGA	data,	
regardless	of	input	type.	

•  SEQAN	-	A	Consistency-based	Consensus	Algorithm	for	De	
Novo	and	Reference-guided	Sequence	Assembly	of	Short	
Reads.	By	Tobias	Rausch	and	others.	C++,	Linux/Win.	

•  		



Commercial	Genomics	Souware		
•  Accelrys	–	“Pipeline	Pilot”	–	comprehensive	

NGS	data	analysis-automated	workflows	
•  BiomaKers	–	“Geneious	Suite”	of	DNA	

sequence	analysis	SW	solu8ons	
(Bioinforma8cs	+	molecular	biology	tools	in	a	
single	package).	

•  CLC	Bio	–	Full-service	bioinforma8cs	sol.	
Provider	

•  DNAnexus	–	Solu8on	built	on	Amazon	Web	
Services	cloud-based	storage-and-analysis	

•  GenomeQuest	–	Global	sol.	And	service	
provider	of	large-scale	genomic	SW	app	

•  Geospiza	(Subsidiary	of	Perkin	Elmer)	–	Web	
based	enterprise	SW	sys.		

•  NextBio	–	SaaS,	Cloud-based	scien8fic	
pla�orm	to	aggregate	and	interpret	large	
quan88es	of	genomic	data	

•  Omixon	–	NGS	Analysis	Toolkit;	Niche	NGS	
analy8c	sol.	Vendor	focused	on	genomics	
variant	analysis	

•  Oracle	Health	Sciences	Transla8onal	
Research	Center	–	Helps	clinical	researchers	
normalize,	aggregate,	and	analyze	data	from	
variety	of	sources	for	“Transla8onal	
Research”	–	“Bench	to	Bedside”	

•  SAS	JMP	Genomics	–	Combines	dynamically	
interac8ve	graphics	capabili8es	of	JMP	with	
sta8s8cal	and	analy8cal	power	of	SAS	
Analy8cs.		

•  Strand	Life	Sciences	–	“Avandis”	NGS	SW	
solu8on	is	a	desktop	data	mining	and	
visualiza8on	pla�orm.	Focus	on	small	RNA	
analysis,	RNA-Seq	transcrip8on	analysis,	
ChIP-Seq	transcrip8on	regula8on	analysis.	
Etc.		



Cloud?	

•  In	addi8on	to	“tar-balls”	for	tradi8onal	
installa8on	on	your	server	(or	desktop)	all	are	
now	freely	available	as	“virtual	machines”		
–  that	can	be	loaded	into	a	cloud	resource,	such	as	
Amazon	EC2	(and	likely	very	soon	on	Google	
Compute	Engine)		

– Or	onto	your	private	cloud	implemented	by	
OpenStack,	Eucalyptus	or	VirtualBox.	



What	is	this	cloud?	
•  Compute,	storage,	networking	

that	you	rent	–	buy	it	by	the	
pound,	as	much	as	you	want	

–  Amazon	EC2,	etc.,	Google	Engine	
•  You	do	not	see	the	underlying	

hardware	
–  You	see	a	“virtual	machine,”	a	souware	

image	of	a	machine	that	insulates	you	
from	the	actual	hardware	

–  Security,	portability,	resource	efficiency	

•  Package	it	up	and	store	it	away	for	
later	retrieval	when	you	don’t	need	it	
anymore	

–  This	is	called	an	“instance”	in	Amazon	
parlance	

•  Many	organiza8ons	layer	the	top	
three	boxes	on	top	of	an	instance	and	
repackage	it	

–  This	is	what	you	retrieve	and	launch	
when	use	CloudBioLinux,	etc.		

Souware	Frameworks	

Virtualiza8on	

Applica8ons	

System	Souware	and	Resource	
Management	

Computer	Hardware,	Storage	and	
Networks	

Programming	Model	(abstrac8on)	



Go	have	a	look	at	Amazon	Web	
Services	and	the	Ales8c	Images		

•  You	will	be	astonished	at	what	is	available	with	only:		
•  And	watch	Google	Compute	Engine	closely.		

•  They	will	clearly	be	integra8ng	their	well	known	services	with	cloud	
compute	horsepower	

•  Their	introductory	keynote	in	late	June	used	a	human	genomics	
example	–	calcula8ng	in	real	8me		

hKp://aws.amazon.com/	 hKp://ales8c.com/	

+



Get	some	more	compute	horsepower	
•  Programming	models	

–  The	view	of	the	underlying	
compute	machinery	to	which	the	
applica8on	is	programmed	

•  For	our	purposes	
–  Simple	single	processor	

•  single	threaded	–	where	most	
bioinforma8cs	apps	s8ll	are	

•  Von	Neumann	
–  Mul8ple	core	

•  Shared	memory	with	mul8ple	
threads	

•  OpenMP	
–  Mul8ple	node	

•  Message	Passing	(MPI)	
•  GAS	and	PGAS	

–  (par88oned)	global	address	
space	

•  An	now	Map-Reduce	(Hadoop)	for	
(unstructured)	data	

Souware	Frameworks	

Virtualiza8on	

Applica8ons	

System	Souware	and	Resource	
Management	

Computer	Hardware,	Storage	and	
Networks	

Programming	Model	(abstrac8on)	



Hadoop	(aka	Map-Reduce)	
•  For	unstructured	data	Hadoop	

provides	a	abstracted	and	portable	
way	to	harness	an	array	of	
commodity	processors	in	parallel	

•  For	example	in	a	simple	word	
coun8ng	exercise	à	

•  Your	task	is	to	write	two	small	codes,	
a	mapper	and	a	reducer			

•  You	can	download	Apache	Hadoop	
and	implement	it	on	your	favorite	
hardware	(
hKp://hadoop.apache.org/)	

•  That’s	fun	and	useful	if	run	your	own	
data	center	

•  But	it’s	available	as	Amazon	Map-
Reduce	



Remember	Schatz’s	Cloudburst	from	
earlier?	

•  That	was	BLAST	on	
Hadoop 		

•  Schatz	and	colleagues	
have	now	implemented	
Bow8e	and	SOAPsnp	on	
Hadoop,	called	it	
Crossbow	and	packaged	it	
as	an	EC2	cloud	image	

•  Their	mapper	and	reducer	
are	obviously	more	
complicated	

•  Innova8ve	–	you	will	see	
more	of	this	

Souware	Frameworks	

Virtualiza8on	

Applica8ons	

System	Souware	and	
Resource	

Management	

Computer	Hardware,	
Storage	and	Networks	

Programming	Model	
(abstrac8on)	



And	several	innova8ve	approaches	to	
the	underlying	compute	machinery	-		

•  But	first	…	
•  Much	of	HPC	has	
concentrated	on	
floa8ng	point	
opera8ons	 Trend	line	#1	

Trend	line	#500	

How	long	
un8l		
#1	falls	off	
the	list?	



Gordon	at	the	San	Diego	
Supercompu8ng	Center	

•  1024	compute	nodes	
–  64	TB	of	distributed	memory	

•  64	I/O	nodes		
–  48	GB	of	distributed	memory	
–  And	256	TB	of	PCI-aKached	

SSD!	
•  And	there	is	a	4	PB	disk	

storage	system	
•  Most	of	the	publicized	app	s/w	

for	Gordon	is	simula8on/
floa8ng	point	oriented.		

•  Programming	model?	
•  Remember	the	SOAPdenovo	

memory	needs	from	earlier	in	
the	talk:	140GB	



SGI’s	Ultra-Violet	(UV)	
•  In	its	largest	shared	

configura8on:	
–  4096	processor	cores	and	

64TB	of	shared	memory	(in	
2013)	

•  Implementa8ons	of	
applica8ons	known	for	large	
memory	requirements	
–  Velvet,	SOAPdenovo	and	

ABySS	
•  Excels	at	implementa8ons	

of	GAS	(global	address	
space)	as	the	programming	
model	

Eng	Lim	Goh	(SGI	CTO)	ouen	points	out	that	the	UV	is	just	
like	a	really	big	PC	J	



Convey	Computer	
•  Field	Programmable	Gate	Arrays	

(FPGA)	augments	the	general	
purpose	processor	

•  The	programs	are	called	
“Personali8es”	and	implement	
specialized	hardware	architectures	
designed	to	execute	specific	
algorithms.		

•  Co-processor	memory	system	built	
around	Convey-designed	ScaKer-
Gather	DIMMs,	op8mized	for	random	
transfers	of	8-byte	bursts,	providing	
near	peak	bandwidth	for	non-
sequen8al	8-byte	accesses.		

•  Sharing	a	logical	address	space	with	
the	general	processor	main	memory	

•  I	encourage	you	to	speak	with	the	
Convey	colleagues	at	this	mee;ng	



Two	addi8onal	“accelerator”	
contenders,		Bina	Box	and	Timelogic	

•  Bina	Box		
•  On	site	compu8ng	hardware	consis8ng	of	

graphics	processing	units,	field	
programmable	gate	arrays,	and	mul8core	
central	processing	unit	

•  Backed	up	proprietary	backend	analysis	
compu8ng	capability	and	storage	in	the	
“Bina	Cloud.”			

•  hKp://www.binatechnologies.com	
	

•  Timelogic	
•  PCIe	connected	FPGA	accelerator	
•  With	implementa8ons	of	BLAST,	SW,	

Hidden	Markov,	gene	finding	s/w		



What	we	didn’t	cover	–	(material	for	BioHPC	102	?)	
Please	give	me	your	sugges8ons	

	
•  The	instruc8ons	issued	from	compilers	that	implement	the	algorithms/applica8ons	

and	their	suitability	for	the	underlying	processors	
–  For	example,	AVX	(in	x86),	vector	instruc8ons	for	floa8ng	point	will	become	AVX2	in	the	next	

genera8on	of	microarchitecture	including	integer	instruc8ons:	
–  And	the	Fused	Mul8ply-Add	(FMA3/4)	and	XOP	instruc8ons	
–  MIC,	GPGPU	and	future	GP	instruc8ons	

•  Addi8onal	fundamental	algorithms	and	their	implica8on	for			
–  Hidden	Markov	Models	
–  Mul8ple	Sequence	Alignment	
–  Clustering	Tools	

•  Future	memory	technologies	
–  There’s	more	than	just	DRAM	in	our	future	
–  Connected	Solid	State	Disks		
–  Deeper	memory	hierarchies	
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